Search results for " regression"
showing 10 items of 1835 documents
Prevalence and characteristics of antidepressant drug prescriptions in older Italian patients.
2012
ABSTRACTBackground: During last few decades, the proportion of elderly persons prescribed with antidepressants for the treatment of depression and anxiety has increased. The aim of this study was to evaluate prevalence of antidepressant prescription and related factors in elderly in-patients, as well as the consistency between prescription of antidepressants and specific diagnoses requiring these medications.Methods: Thirty-four internal medicine and four geriatric wards in Italy participated in the Registro Politerapie SIMI–REPOSI study during 2008. In all, 1,155 in-patients, 65 years or older, were enrolled. Prevalence of the use of antidepressants was calculated at both admission and dis…
Estimating the macroscopic capillary length from Beerkan infiltration experiments and its impact on saturated soil hydraulic conductivity predictions
2020
International audience; The macroscopic capillary length, λc, is a fundamental soil parameter expressing the relative importance of the capillary over gravity forces during water movement in unsaturated soil. In this investigation, we propose a simple field method for estimating λc using only a single-ring infiltration experiment of the Beerkan type and measurements of initial and saturated soil water contents. We assumed that the intercept of the linear regression fitted to the steady-state portion of the experimental infiltration curve could be used as a reliable predictor of λc. This hypothesis was validated by assessing the proposed calculation approach using both analytical and field d…
Statistical retrieval of atmospheric profiles with deep convolutional neural networks
2019
Abstract Infrared atmospheric sounders, such as IASI, provide an unprecedented source of information for atmosphere monitoring and weather forecasting. Sensors provide rich spectral information that allows retrieval of temperature and moisture profiles. From a statistical point of view, the challenge is immense: on the one hand, “underdetermination” is common place as regression needs to work on high dimensional input and output spaces; on the other hand, redundancy is present in all dimensions (spatial, spectral and temporal). On top of this, several noise sources are encountered in the data. In this paper, we present for the first time the use of convolutional neural networks for the retr…
Contribution of environmental factors to temperature distribution at different resolution levels on the forefield of the Loven Glaciers (Svalbard)
2007
ABSTRACTThe climate and its components (temperature and precipitation) are organised according to different spatial scales that are structured hierarchically. The aim of this paper is to explore the dependence between temperature and deterministic factors at different scales on a 10 km2 study area on the northwestern coast of Svalbard. A GIS was developed which contained three sources of information: temperature, remotely sensed imagery and digital elevation models (DEM), and derived raster data layers. The first layer, temperatures, was acquired at regularly observed temporal intervals from 53 stations. The second layer comprised remotely sensed images (aerial photography and SPOT imagery)…
Hyperspectral dimensionality reduction for biophysical variable statistical retrieval
2017
Abstract Current and upcoming airborne and spaceborne imaging spectrometers lead to vast hyperspectral data streams. This scenario calls for automated and optimized spectral dimensionality reduction techniques to enable fast and efficient hyperspectral data processing, such as inferring vegetation properties. In preparation of next generation biophysical variable retrieval methods applicable to hyperspectral data, we present the evaluation of 11 dimensionality reduction (DR) methods in combination with advanced machine learning regression algorithms (MLRAs) for statistical variable retrieval. Two unique hyperspectral datasets were analyzed on the predictive power of DR + MLRA methods to ret…
Optimizing Gaussian Process Regression for Image Time Series Gap-Filling and Crop Monitoring
2020
Image processing entered the era of artificial intelligence, and machine learning algorithms emerged as attractive alternatives for time series data processing. Satellite image time series processing enables crop phenology monitoring, such as the calculation of start and end of season. Among the promising algorithms, Gaussian process regression (GPR) proved to be a competitive time series gap-filling algorithm with the advantage of, as developed within a Bayesian framework, providing associated uncertainty estimates. Nevertheless, the processing of time series images becomes computationally inefficient in its standard per-pixel usage, mainly for GPR training rather than the fitting step. To…
Top-of-Atmosphere Retrieval of Multiple Crop Traits Using Variational Heteroscedastic Gaussian Processes within a Hybrid Workflow.
2021
In support of cropland monitoring, operational Copernicus Sentinel-2 (S2) data became available globally and can be explored for the retrieval of important crop traits. Based on a hybrid workflow, retrieval models for six essential biochemical and biophysical crop traits were developed for both S2 bottom-of-atmosphere (BOA) L2A and S2 top-of-atmosphere (TOA) L1C data. A variational heteroscedastic Gaussian process regression (VHGPR) algorithm was trained with simulations generated by the combined leaf-canopy reflectance model PROSAILat the BOA scale and further combined with the Second Simulation of a Satellite Signal in the Solar Spectrum (6SV) atmosphere model at the TOA scale. Establishe…
Exploitation of SAR and Optical Sentinel Data to Detect Rice Crop and Estimate Seasonal Dynamics of Leaf Area Index
2017
This paper presents and evaluates multitemporal LAI estimates derived from Sentinel-2A data on rice cultivated area identified using time series of Sentinel-1A images over the main European rice districts for the 2016 crop season. This study combines the information conveyed by Sentinel-1A and Sentinel-2A into a high-resolution LAI retrieval chain. Rice crop was detected using an operational multi-temporal rule-based algorithm, and LAI estimates were obtained by inverting the PROSAIL radiative transfer model with Gaussian process regression. Direct validation was performed with in situ LAI measurements acquired in coordinated field campaigns in three countries (Italy, Spain and Greece). Res…
2016
Gianluca Tramontana was supported by the GEOCARBON EU FP7 project (GA 283080). Dario Papale, Martin Jung and Markus Reichstein acknowledge funding from the EU FP7 project GEOCARBON (grant agreement no. 283080) and the EU H2020 BACI project (grant agreement no. 640176). Gustau Camps-Valls wants to acknowledge the support by an ERC Consolidator Grant with grant agreement 647423 (SEDAL). Kazuhito Ichii was supported by Environment Research and Technology Development Funds (2-1401) from the Ministry of the Environment of Japan and the JAXA Global Change Observation Mission (GCOM) project (no. 115). Christopher R. Schwalm was supported by National Aeronautics and Space Administration (NASA) gran…
Eco-Friendly Estimation of Heavy Metal Contents in Grapevine Foliage Using In-Field Hyperspectral Data and Multivariate Analysis
2019
Heavy metal monitoring in food-producing ecosystems can play an important role in human health safety. Since they are able to interfere with plants’ physiochemical characteristics, which influence the optical properties of leaves, they can be measured by in-field spectroscopy. In this study, the predictive power of spectroscopic data is examined. Five treatments of heavy metal stress (Cu, Zn, Pb, Cr, and Cd) were applied to grapevine seedlings and hyperspectral data (350−2500 nm), and heavy metal contents were collected based on in-field and laboratory experiments. The partial least squares (PLS) method was used as a feature selection technique, and multiple linear regressions (…